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A steady heat conduction problem with mixed conditions assigned at 
the boundary of a half-space is examined�9 Two methods of solution 
are compared, and expressions are given for extreme values of the 
temperature. 

We shal l  examine  the ha l f - space  y > 0, on the 
boundary  of which mixed boundary  condit ions of the 
type (Fig. la)  

T2-h  3T = C w h e n g = O ,  l x l % l ,  
ou 

T = 0 w h e n y - -  0, Ixl > 1 (i) 

a re  sa t i s f ied .  
The f i r s t  of these  boundary  condit ions co r r e sponds ,  

as is known, to condi t ions  of convect ive heat t r a n s f e r ,  
and the second to condi t ions  where  the sur face  is i so -  
t he rma l .  

To find the t e m p e r a t u r e  d i s t r ibu t ion  in the half -  
space y > 0 we shalI  use  two di f ferent  methods,  one of 
which is based on reducing  the p rob l em to solut ion of 
an in tegra l  F r e d h o l m  equation,  while the o ther  u se s  
the p a r t i c u l a r  p rope r t i e s  of the f i r s t  of the boundary  
condit ions (1) and the method of eonformal  mapping.  
A p a r a l l e l  examina t ion  of these  two methods is w a r -  
ran ted  by the fact that the f i r s t  allows us to cons t ruc t  
a solut ion of the p rob l em which is in p r inc ip l e  as 
accu ra t e  as we p lease ,  while the second leads to a 
more  effective,  though admit tedly  approximate ,  so lu-  

tion. 
Examin ing  the f i r s t  of the above methods,  we shal l  

seek a solut ion in the usua l  form:  

T = ~ A (p) exp(-- pu)cos (px)dp. (2) 
0 

Then the boundary  condi t ions  (1) reduce  to the follow- 
ing s y s t e m  of pa i r ed  in tegra l  equat ions for the un-  

known coeff icient  A(p): 

m 
l A (p) (l + hp) cos (px) dp = C when I x [ < 1, 
5 

SA(p)cos(px)dp = 0 when Ix ] >1.  (3) 
0 

Following [1], we shal l  seek a solut ion of this  s y s -  
t em of equat ions in the fo rm 

1 
A (p) - j' cp' (t)/o (pO dt 

0 

(4) 

or  (after in tegra t ion  by par ts)  in the form 

l 
A ( p )  = (~ (1) ]0 (p) -~- p .!" (~(L) [1 ( P O d  t. (5) 

0 

By subs t i tu t ing  (4) in the second of Eqs. (3) it  is 
not diff icult  to ver i fy  that it is sa t i s f ied  iden t ica l ly .  

In tegra t ing  the f i r s t  of Eqs. (3) with r e spec t  to x, 
we b r ing  it  to the fo rm 

f Cx t- 1 A(p) sin (px)dp = - - .  A(p) sin (px) dp + ~-  P h (6) 
0 0 

Subst i tut ing (4) and (5), r e spec t ive ly ,  in the f i r s t  
and second t e r m s  of the ieft s ide of (6), and us ing  the 

known exp re s s ions  [2], 

[ O w h e n  O ~ x ~ t, 
o I~ (pt) sin (px) dp = [ t / } r ~  ~ •2 when x > t ~> O, 

,~ [I0 (P)/P] sin (px) dp = arc sin x, 

f f  It (pl)sin(px)dp -- { x/t l i t  2 -  x 2 when 0 ~-'. x ( t, 

o 0 when x ) t > O, 

I• h ~T a 

I 
-1 I o t ~ x  

ob t+ 
I r~o 

f ++-+ I "1~a 
r=c C d o 

x, 

Fig. I. Diagram of half-space: a) original system; b) approximate 
model for calculation; c) transformed model for calculation. 
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we a r r i v e  at the equation 
x 

S ~p1(t)dt q~(1) arcsinx + 
V ~  ~ - h  

0 
! 

1 ~,b(x, t)~(t)dt== Cx * 
+ T  - h  

o 

where 

whenO < x <  1, 

+, (x, t) = [ x/t  V ~  when 0 < x < t, 
/ 0 when x > t > 0. 

(7) 

We now int roduce the function 

~' (t) dt 
f (x) = V x 2 - t  ~ (8) 

o 

Equation (8) may be regarded  as an in tegra l  Sehlb- 
mi leh  equation with r e spec t  to function ~ow(t). 

We then have 

# 

Vt~_---- 7 •  (9) 
0 

Subst i tut ing (8) and (9) into (7), we a r r i v e  at an 
in tegra l  F redho lm equation of type II r e la t ive  to 
function f(x): 

l 

2 ~ N ( x ,  s ) f ( s ) d s =  1 f (x )  + ~ --~ [Cx - - (p (1 )a rc smx] , ( lO)  

0 

where 

1 
N (x, s) = s i , (x,  t) 

]/l  ~ S 2 
s 

dt 

[_~ X~ S 2 
2 x 2 + s 2 - -  2x2s 2 - -  2xs ] / (  1 - -  s~)( 1 - -  x 2) 

= 
S ~ _ _  X 2 

In x ~ + s ~ __ 2xZs 2 _ 2xs ] / i l  s2)(l--x 2) 

(t > x > s), 

( t > s > x ) .  

It is not hard to e s t ab l i sh  that the ke rne l  N(x, s) is 
quadra t i ca l ly  in tegrab le  and s y m m e t r i c a l .  There fore  
the solut ion of the p rob lem may in p r inc ip le  be con-  
s ide red  found, s ince  the in tegra l  equation (10) can be 
solved by a known method, based,  for  example,  on 
r ep l acemen t  of the a r b i t r a r y  kerne l  by a degenera te  
one [3]. In the la t te r  case  the solut ion may be ob- 
tained with a given degree  of accuracy  for  any values  
of the p a r a m e t e r  2/hTr which do not coincide with the 
e igenvalues  of (10). As a resu l t ,  function f(x) is de-  
t e rmined  to an accuracy  within the constant  r This  

*Since the solut ion of the p rob lem examined is an 
odd function with r e spec t  to x, henceforth,  for def-  
in i t eness ,  we shall  put x > 0 .  
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constant  and the function ~0(t) a re  de te rmined  f rom (9), 
which allows us to find d i rec t ly  the t e m p e r a t u r e  d i s -  
t r ibu t ion  of i n t e re s t  by me a ns  of success ive  use  of (4) 
and (2). Using the method desc r ibed ,  however,  the 
solution may be found only numer ica l ly ,  which appre -  
ciably r e s t r i c t s  the poss ib i l i ty  of its in te rpre ta t ion .  

We s h a l l  the re fo re  examine  the poss ib i l i ty  of ob- 
ta ining an analy t ica l  expres s ion  of the solut ion,  even 
if admit tedly  approximate .  F o r  this we use  the prop-  
e r ty  [4] of c h a r a c t e r i s t i c  points for boundary  con- 
di t ions of type III. The geomet r i c  locat ion of the 
cha rac t e r i s t i c  points  ( c ha r a c t e r i s t i c  surface)  for  the 
convect ive heat t r a n s f e r  sur face  that we a re  examin-  
ing {with h = const) will  be an inf ini te ly long s t r ip  of 
uni t  width, pa ra l l e l  to the plane y = 0 and d is tance  h 
f rom i t .  We a s s u m e  that the condit ion T]y = - h  = C 
is sa t is f ied on the cha rac t e r i s t i c  sur face .  In this 
case the f i r s t  of boundary  condit ions (1) will be s a t i s -  
fied approximate ly  on the sur face  y = 0, Ixl > 1; the 
degree  of approximat ion  will be g r ea t e r ,  the more  
l i nea r  the t e m p e r a t u r e  va r i a t ion  in the d i rec t ion  of 
the y axis in the sec t ion  f rom the c h a r a c t e r i s t i c  s u r -  
face to the s u r f a c e y =  0, Ixl > 1, i . e . ,  the g r e a t e r  
the rat io of the plate width to the coefficient  h (this 
having the d imens ion  of length, as is eas i ly  s een ) .  
Thus,  the t he r ma l  field of i n t e r e s t  to us may be found 
approximate ly  wi th  the aid of the ca lcula t ion  model  
depicted in Fig. lb .  ** 

We shal l  c a r r y  out this ca lcula t ion  with the help of 
eonformal  mapping. F o r  this purpose  we br ing  into 
cons idera t ion  the plane of the complex  va r i ab l e  z 
(Fig. lb) ,  and conformal ly  map on it the par t  bounded 
bythe contour  bcde,*** this  being the upper  ha l f -p lane  
of the new complex va r i ab le  z1. Then the points of the 
or ig ina l  plane z = 1; 1 - i h ;  - i h ;  ~o go over ,  r e spec -  
t ively,  into the points  z 1 = a; 1 ; 0 ; ~  of the mapped 
plane.  The des i red  mapping is given by the Chr is tof-  
fe l -Schwarz  in tegra l ,  which in our  case  leads to the 
formula  

z l  

~ " V ' ~ - -  a__ dt + B. (11) 
- A 1 / t ( t -  l) 

0 

Because of the confo rmi ty  of points of the planes 
z and zl, we find that the t r a n s f o r m a t i o n  constants  A 
and B are  

A =: 1/2 ] / a E  (]/1]a), B - - -  ih, 

while the p a r a m e t e r  a is de te rmined  f rom the t r a n s -  
cendental  equation 

**In cons t ruc t ing  this model,  we assumed that on the  
su r faces  Ixl = 1, - h  < y < 0 the boundary condit ion 
aT/ax  = 0 is sat isf ied,  which cor responds  very  c lose ly  
to the obvious condit ions of heat flux d is t r ibut ion  in 
the sys tem being examined.  

***Examinat ion of this  region proves  to be suff icient  
because  of s y m m e t r y  of the or ig ina l  sys tem.  
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[K' (u) - -  E' (a)]/E (a) = h, where a = l'~l~a. 

The solut ion of this equation for  any given value of h 
may eas i ly  be found with the aid of tables  of e l l ipt ic  
in tegra l s .  The cor responding  dependence a(h) is shown 
graphica l ly  in Fig. 2. 

Thus,  the function (11) being mapped has been de-  
t e rmined  complete ly ,  s ince  the in tegra l  en te r ing  into 
it has been evaluated for any values  of Z112]. The next 
stage of the solut ion now reduces  to finding the t he rma l  
field of the sys t em of planes  shown in Fig. lc .  

An effective method of solut ion of s i m i l a r  p rob-  
lems  has been put forward by Sochnev [5], and leads 
to the following express ion  for the modulus of the 
t e m p e r a t u r e  grad ien t  q: 

D~ '~/ " q = (x~ + VY) [(& - -  1) 2 2_ U~] [(.r~ - -  a) ~ + U~], (12) 

where  the constant  D is de t e rmined  f rom the condit ion 

a 

S qJu, d& = C 
i 

and is equal to 

D ,= t / ~ C / 2 K ( } ' ~  - l/a). 

T.,: 0 w h e n  ] . v l > a i ,  !1=0, (16) 

where T I is determined by (15), and the parameter 

a t is found from the condition 

To] = C  {-h OT~(a~ !i) i = 0 ,  
- iv=0 (?!/ , j=0  

which gives 

Fig. 2. 

l a  /'l 
o 0,4, o.a h 

Graph for de t e rmin ing  the t r a n s f o r m a t i o n  
p a r a m e t e r .  

Express ion  (12) allows us to find d i rec t ly  the t em-  
pe ra tu r e  d i s t r ibu t ion  on the sur face  xl < 0, which 
co r re sponds  to the plane of s y m m e t r y  of the ea lcu la -  
t ion model shown in Fig. lb:  

T *,<0 = (13) 
g1~O 

C F ( a r c s i n l /  a 1 / l ~ - ~ )  
K( l f l  - l / a )  a--x~ ; " 

Lastly,  to de t e rmine  the e r r o r  in the solut ion 
found, we shal l  examine  the poss ib i l i ty  of obtaining 
upper  and lower  e s t ima tes  of the t rue  value of t em-  
p e r a t u r e  at some a r b i t r a r y  point of the ha l f - space  
y > 0 (Fig. la),  For  this purpose  we shal l  t r a n s f e r  
f rom the accura te  boundary condit ions of p rob lem (1) 
to approximate  boundary condit ions,  one of which may 
be obtained by equating h = 0 in (1), i . e . ,  having the 

form 

T~ i C w h e n  I x [ <  I, g = O .  
0 when }x} > 1, g = 01 (14) 

It is evident that the function Tl(x,y) found for  these 
condit ions gives an upper  es t imate  for the t rue  t em-  
p e r a t u r e  d i s t r ibu t ion  T(x,y).  At the same  t ime,  de te r -  
mina t ion  of Ti(x, y) does not p resen t  any difficulty and 
leads to the express ion  

C 1 4- 
Yx (.r, p) = - -  [ arcig 

[ - - X  
. a r c i g - - - ] .  (15) !/ , 

In seeking a lower es t imate ,  we go over  to approxi-  
mate  boundary condit ions of the form 

The need to in t roduce  the p a r a m e t e r  a I (contrac-  
t ion of the s t r ip  examined) is de te rmined  by the fact 

~I < 0 , and the first of the boundary that T2/~ I ~ i  1 

condit ions (16) loses  i ts  physica l  meaning  when al < 

< Ixl < 1. 
It is easy to show that the function T2(x, y} con- 

s t r u t t e d  in this way actual ly gives a lower  e s t ima te  
for function T(x,y) .  To find Ta, we subs t i tu te  the ex-  

p r e s s i o n  OT~@ ly 0 ,in (16), af ter  which we obtain 

T, = JC[I - -  (h/~).2/(1--x2)] when Ix[ < a~, g := 0, 
- / 0 when Ix! > al, Y =0. 

An express ion  for T 2 may eas i ly  be obtained with 
the help of the Po i s son  in tegra l  for the ha l f -p lane  

al4-x a , - x  h T,,(x, g )=  _ C  arctg - - -  + arctg 
" rr t! ~/ j 

2Ch!l [ x2 : !/2_}_ 1 In (1 +a~) ~ + 
n ~ 1 ( x ' 4 - 9 +  l) ~" 4xel [. 2 { l - - a l )  ~ 

:-X111 i x -  aL)2-!-!t2 X "a-!t 2 -  1 X 
(x -',- a,) "2 + ~/2 !/ 

a~+.v +arct~ a ~ - - ~ )  (17) ?.( arctg ~/ g , . 

Thus,  express ions  (15) and (17) allow us to e s t i -  
mate  the accuracy  of the solut ion of the p rob lem ex- 
amined,  both that found from the in tegra l  equation 
(10) and that found f rom the approximate  formula  (13). 

T , - -  h ~)T-2-~ = C w h e n  J.v[ < a ~ ,  !/  0 ,  
*From this  it is c l ea r  that the es t imate  obtained may 

be used only for values  of h < 7r/2. 
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In c o n c l u s i o n ,  we  n o t e  t h a t  t h e  r e s u l t s  o b t a i n e d  m a y  
b e  u s e d  no t  on ly  f o r  t h e  h e a t  c o n d u c t i o n  p r o b l e m  e x -  
a m i n e d ,  b u t  a l s o  f o r  any  p r o b l e m  of  p o t e n t i a l  t h e o r y  
t h a t  i s  s i m i l a r  to  i t  a s  r e g a r d s  f o r m u l a t i o n ,  and  in  
p a r t i c u l a r  to t h e  c a l c u l a t i o n  of t h e  s t e a d y  e l e c t r i c  
f i e l d  of l i n e a r l y  p o l a r i z e d  e l e c t r o d e s  of a p p r o p r i a t e  
c o n f i g u r a t i o n .  

NOTATION 

T-temperature; TI, Tz-functions giving upper and lower estimates 
of the true values of temperature, respectively; h -a  quantity which is 
the reciprocal of the heat transfer coefficient; q-temperature gradient; 
C-a constant proportional to the temperature of the medium; x, y-  
rectangular coordinates in the original plane; xl, yi-rectangular co- 
ordinates in the mapped plane; z, zi-complex variables; p-integral 
transformation parameter; s, t-(real) variables of integration; I0, 11- 
Bessel functions of the first kind, of zeroth and first order, respectively; 
A, c~, D-real constants; B-imaginary constant; K(c0, g(c~)-complete 

elliptic integrals of first and second kind, respectively; c~-modulus of 
elliptic integrals; ?-incomplete elliptic integral of first kind. 
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