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A steady heat conduction problem with mixed conditions assigned at
the boundary of a half-space is examined. Two methods of solution
are compared, and expressions are given for extreme values of the
temperature,

We shall examine the half-space y > 0, on the
boundary of which mixed boundary conditions of the
type (Fig. 1a)

aT

T-—h — =Cwheny=0, [x!<]1,
Iy

T=0wheny=0, |x]>1 1)

are satisfied.

The first of these boundary conditions corresponds,
as is known, to conditions of convective heat transfer,
and the second to conditions where the surface is iso~
thermal.

To find the temperature distribution in the half-
space y > 0 we shall use two different methods, one of
which is based on reducing the problem to solution of
an integral Fredholm eguation, while the other uses
the particular properties of the first of the boundary
conditions (1) and the method of conformal mapping.

A parallel examination of these two methods is war-
ranted by the fact that the first allows us to construct
a solution of the problem which is in principle as
accurate as we please, while the second leads to a
more effective, though admittedly approximate, solu-
tion.

Examining the first of the above methods, we shall
seek a solution in the usual form:

T = [ A(p)exp(— py)cos (px) dp- (2)
0
Then the boundary conditions (1) reduce to the follow-

ing system of paired integral equations for the un-
known coefficient A(p):

{ A(p) (14 hp)cos (px)dp = C when | x| <1,
h

A{(p)cos (px)dp = 0 when jx | >1. (3)
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Following [1], we shall seek a solution of this sys-
tem of equations in the form

1

Ap)= [ o' ()]s (Pl @

0

or (after integration by parts) in the form

1
APy =W (P +p o hpnd. ()
0
By substituting (4) in the second of Egs. (3) it is
not difficult to verify that it is satisfied identically.
Integrating the first of Egs. (3) with respect to x,
we bring it to the form

o

- . 1 ¢ A Cx
(px)dp + — 2 sin dp = —.
. A(p)sin(px)dp . X P sin (px)dp )
0 4]
Substituting (4) and (5), respectively, in the first
and second terms of the left side of (6), and using the

known expressions [2],

@ [Owhen 0< x < t,
{ Io(ptysin (pxydp =1
b 11/} 2 — whenx >t 2> 0,

( [y (p)/p) sin (px) dp = arcsinx,
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| 1 (pt) sin (px) dp = 4 =

z;f’ ® b
70 o 0 170
< 3 b .
re ¢ d

b 0 whenx >1> 0,
a
43t
%10
Ly
/
ly,
@ C
7= 7=0
an oy
0 / a

Fig. 1. Diagram of half-space: a) original system; b) approximate
model for calculation; c) transformed model for calculation.
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we arrive at the equation

arcsinx +

Fogmd | o)
j V1 T
Q

Cx * (7)

i
o e ewar- S2
0

when0 <x < 1,

where
(e B = {)c/tl/tz——x2 when0 < x < ¢,
' 0 when x > ¢ > 0.
We now introduce the function
o (e
f(x) = —V;——TZ; (8)

Equation (8) may be regarded as an integral Schis-
milch equation with respect to function ¢ '(t).
We then have
1

2 [ _S0
o Ve e

Substituting (8) and (9) into (7), we arrive at an
integral Fredholm equation of type II relative to
function f(x):

1

2 1 .
f(x)—i——h—; _Y N (x, s)f(s)ds:T [Cx—(p(l)arcsmx],(lo)
0 . .

where

1
N, s)=s| &0 4
(x, s) VE =
1 : xz_sz
LI ———_ ({ > ),
2 x2+sz—2x252—-2xs]/(l——sz)(1—-xz)( 7xz9
2__ .2
—l—ln S A (t>s>x).

2 x% 4 8% —- 242 — 25 )/ (1—s)( 1 —x%)

It is not hard to establish that the kernel N(x, s) is
quadratically integrable and symmetrical. Therefore
the solution of the problem may in principle be con-
sidered found, since the integral equation (10) can be
solved by a known method, based, for example, on
replacement of the arbitrary kernel by a degenerate
one [3]. In the latter case the solution may be ob-
tained with a given degree of accuracy for any values
of the parameter 2/hw which do not coincide with the
eigenvalues of (10). As a result, function f(x) is de-
termined to an accuracy within the constant ¢ (1). This

*Since the solution of the problem examined is an
odd function with respect to x, henceforth, for def-
initeness, we shall put x > 0.
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constant and the function ¢ (t) are determined from (9),
which allows us to find directly the temperature dis-
tribution of interest by means of successive use of (4)
and (2). Using the method described, however, the
solution may be found only numerically, which appre-
ciably restricts the possibility of its interpretation.

We shall therefore examine the possibility of ob-
taining an analytical expression of the solution, even
if admittedly approximate. For this we use the prop-
erty {4] of characteristic points for boundary con-
ditions of type III. The geometric location of the
characteristic points (characteristic surface) for the
convective heat transfer surface that we are examin-
ing (with h = const) will be an infinitely long strip of
unit width, parallel to the plane y = 0 and distance h
from it. We assume that the condition le =-h=C
is satisfied on the characteristic surface. In this
case the first of boundary conditions (1) will be satis-
fied approximately on the surface y = 0, |x| > 1; the
degree of approximation will be greater, the more
linear the temperature variation in the direction of
the y axis in the section from the characteristic sur-
face to the surfacey = 0, |x| > 1, i.e., the greater
the ratio of the plate width to the coefficient h (this
having the dimension of length, as is easily seen).
Thus, the thermal field of interest to us may be found
approximately with the aid of the calculation model
depicted in Fig. 1b. **

We shall carry out this calculation with the help of
conformal mapping. For this purpose we bring into
consideration the plane of the complex variable z
(Fig. 1b), and conformally map on it the part bounded
by the contour bede *** this béing the upper half-plane
of the new complex variable z;. Then the points of the
original plane z = 1; 1 —ih; —ih; = go over, respec-
tively, into the points z; = a;1;0;= of the mapped
plane. The desired mapping is given by the Christof-
fel-Schwarz integral, which in our case leads to the
formula

2y

Al Vi—e 4. Coa1
z_‘A_J Vt(t_—]) dt + B. (11)

Because of the conformity of points of the planes
z and z;, we find that the transformation constants A
and B are

A=1/2VaE(V 1/a), B=—ih,

while the parameter a is determined from the trans-
cendental equation

**In constructing this model, we assumed that on the
surfaces x| = 1, —h <y < 0 the boundary condition
9T/8x=0 is satisfied, which corresponds very closely
to the obvious conditions of heat flux distribution in
the system being examined.

***Examination of this region proves to be sufficient
because of symmetry of the original system.
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K’ (0) =~ E' (@))VE (0} == h,wherea = } 1/a.

The solution of this equation for any given value of h
may easily be found with the aid of tables of elliptic
integrals. The corresponding dependence a(h) is shown
graphically in Fig. 2. :

Thus, the function (11) being mapped has been de-
termined completely, since the integral entering into
it has been evaluated for any values of z1{2]. The next

stage of the solution now reduces to finding the thermal

field of the system of planes shown in Fig. lc.

An effective method of solution of similar prob-
lems has been put forward by Sochnev [5], and leads
to the following expression for the modulus of the
temperature gradient q:

g = D/ 1/(xf + e — 1+ 0 —a)® + 5l (19)

where the constant D is determined from the condition

j‘ Ay, o de =C
¥

and is egual to
D=V aCi2KV1— la).

Expression (12) allows us to find directly the tem-
perature distribution on the surface x; < 0, which
corresponds to the plane of symmetry of the calcula-
tion model shown in Fig, 1b:

x,<0: (13)
y=0

R are < a i

S EEST F (arcsm l//a—xl : 1/1,7) .

Lastly, to determine the error in the solution
found, we shall examine the possibility of obtaining
upper and lower estimates of the true value of tem-
perature at some arbitrary point of the half-space
y >0 (Fig. 1a). For this purpose we shall transfer
from the accurate boundary conditions of problem (1)
to approximate boundary conditions, one of which may
be obtained by equating h = 0 in (1), i.e., having the
form

{‘then x| <1, y=0,
! {0 when l¥]>1, y=0. (14)

It is evident that the function Ty(x,y) found for these
conditions gives an upper estimate for the true tem-
perature distribution T(x,y). At the same time, deter-
mination of Ty(x,y) does not present any difficulty and
leads to the expression

| —x

C 1 +x
Ti{(x. ) = — {arcig + arctg - .
! - P B (15)
In seeking a lower estimate, we go over to approxi-
mate boundary conditions of the form

Tt 90 Cowhenlv|<ay. v 0,
i
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T. -0 whenlx|>a . y=0, {16)

where Ty is determined by (15), and the parameter
a, is found from the condition

— C 'lfh aTl (al . I/) \

iy=0 dy y=0

=0,

which gives

a YT ="

a /
16

T

4 G4 a8 ]

Fig. 2. Graph for determining the transformation
parameter.

The need to introduce the parameter a; (contrac-
tion of the strip examined) is determined by the fact
that T |,—¢ < 0, and the first of the boundary

ag < xlcd

conditions (16) loses its physical meaning when @y <
< x| < 1.

It is easy to show that the function T,(x,y) con-
structed in this way actually gives a lower estimate
for function T(x,y). To find T;, we substitute the ex-

pression T, f ,in (16), after which we obtain
Yy o
T :JC[ |— (h/x)- 2/(1—x%)] when |x| <a,, y =0,
o when x| >a,, y =0.

An expression for T, may easily be obtained with
the help of the Poisson integral for the half-plane

Tolx, y) = 8 (arctg Gtx arctg "% >—v
7

) ™ Yy

_ 2Chy ot (1 +a)
n (% 4 1 4x) 2 (1 —a)®
a2 2 CRE N
ol (x al). Fyt Xyt %
(x+a)l+4° Y
R (arc’(g Lrx L arctg AT ) l . (17)
by y .

Thus, expressions (15) and (17) allow us to esti-
mate the accuracy of the solution of the problem ex-
amined, both that found from the integral equation
(10) and that found from the approximate formula (13).

*From this it is clear that the estimate obtained may
be used only for values of h < 7/2.
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In conclusion, we note that the results obtained may
be used not only for the heat conduction problem ex-
amined, but -also for any problem of potential theory
that is similar to it as regards formulation, and in
particular to the calculation of the steady electric
field of linearly polarized electrodes of appropriate
configuration.

NOTATION

T~temperature; T;, T,-functions giving upper and lower estimates
of the true values of temperature, respectively; h—a quantity which is
the reciprocal of the heat transfer coefficient; q-temperature gradient;
C-a constant proportional to the temperature of the medium; x, y—
rectangular coordinates in the original plane; x;, y;-rectangular co-
ordinates in the mapped plane; z, z;-complex variables; p~integral
transformation parameter; s, t—(real) variables of integration; Iy, I;-
Bessel functions of the first kind, of zeroth and first order, respectively;
A, a, D-real constants; B-imaginary constant; K(o), E(a)-complete
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elliptic integrals of first and second kind, respectively; c~modulus of
elliptic integrals; F~incomplete elliptic integral of first kind,
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